
BuckeyeVR Plot User’s Guide
Version 1.2

Updated: January 26, 2018

Joseph R. H. Smith, Chris M. Orban, Chris D. Porter
Department of Physics, The Ohio State University

Jonathan Brown
Chemical and Bimolecular Engineering, The Ohio State University

Bart Snapp, Jim Fowler
Department of Mathematics, The Ohio State University

Contents

1 Introduction 1

2 Getting Started 1

2.1 Plotting Website . 2

2.2 QR Codes . 5

2.2.1 Using GitHub to Share Scripts . 6

3 Plotting Options 8

3.1 Common Plotting Options . 8

3.1.1 color . 8

3.1.2 Functions and Operations . 8

3.1.3 spawn . 9

3.2 Parametric Curves . 9

3.2.1 setMinMax . 9

3.2.2 setEquation . 9

3.2.3 setSegmentCount . 10

3.2.4 setThickness . 10

3.2.5 color . 10

3.2.6 spawn . 10

3.2.7 Example . 10

3.3 Parametric Surfaces . 11

3.3.1 setMinMax . 11

3.3.2 setSegmentCount . 11

3.3.3 setEquation . 12

3.3.4 color . 12

3.3.5 spawn . 12

3.3.6 Example . 12

3.4 Vectors . 13

3.4.1 setTail . 13

3.4.2 setHead . 13

3.4.3 setRadius . 13

i

3.4.4 color . 13

3.4.5 spawn . 13

3.4.6 Example . 13

3.5 Standard Objects (Cubes, spheres, text etc.) 14

3.5.1 position . 15

3.5.2 rotation . 15

3.5.3 scale . 15

3.5.4 color . 15

3.5.5 Text . 15

3.5.6 Example . 15

3.6 Vector Fields . 16

4 Additional Examples 17

4.1 Potential . 17

4.2 Helix Example . 17

4.3 NaCl . 18

ii

1 Introduction

Welcome to BuckeyeVR, a new framework for plotting parametric surfaces, curves, and vector

fields on smartphones in virtual reality (VR). Visualizations can be viewed in stereoscopic

VR using an Android or iOS smartphone1 and a Google Cardboard compatible viewer, which

can be purchased for a few dollars or made yourself. The app also supports a single-view

mode where you can rotate the phone or swipe and pinch to zoom to change the view like

with a 360◦ video. To downloaded the app, scan the Quick Response (QR) code in Fig. 1,

search for “BuckeyeVR 3D Plot Viewer” in your device’s app store, or check out the plotting

website, which just requires a computer with an internet connection.

Figure 1: Scan this QR code to get the app for your device.

Section 2 gives a quick introduction to the plotting website, Section 3 provides an overview

of the commands used to generate plots, and Section 4 provides several more examples.

2 Getting Started

Visualizations in BuckeyeVR are created with simple scripts that are loaded onto smart-

phones with QR codes. In the script, we describe a set of objects (surfaces, curves, etc.)

that have certain properties (such as their color or parametric equations). For example, let’s

start by plotting a parametric curve. In this case let’s draw a helix, which we will call helix

(variable name), which we want to be a parametricCurve (type). We write

helix=parametricCurve
1Google cardboard apps should generally run on phones that have a gyroscope and are running Android version 4.1 or higher

or iOS version 8.0 or higher https://support.google.com/cardboard/answer/6295046?hl=en.

1

https://buckeyevr.osu.edu/
https://vr.google.com/cardboard/
https://static.googleusercontent.com/media/vr.google.com/en//cardboard/downloads/manufacturing-guidelines.pdf
https://buckeyevr.osu.edu/plot/
https://buckeyevr.osu.edu/plot/
https://support.google.com/cardboard/answer/6295046?hl=en

where ‘helix’ is the name of the object, which we could have also called curve, h, or bob

(something unrelated to the actual object). Each object in the visualization must have a

unique name that cannot contain equal signs or periods.

Then we set the properties of the curve where we use the syntax

variableName.property=X

where for a parametric curve we can set the bounds of t, the equation for the curve and

properties related to how the curve is displayed (as will be expained later).

helix.setMinMax=t,-10,10

helix.setEquation=x,(cos(t))

helix.setEquation=y,(sin(t))

helix.setEquation=z,(.3*t)

helix.setSegmentCount=70

helix.setThickness=0.15

helix.color=red

Then to draw the object on the screen, or ‘spawn’ the object, where we say

helix.spawn

(this line must be the last for a given object).

2.1 Plotting Website

Plotting scripts can be developed and tested on the plotting website buckeyevr.osu.edu/plot

and then loaded onto a smartphone with a QR code. The general layout of the site is shown

in Fig. 2 and described below.

1. Script Entry Text Box

The site will be preloaded with an example script in this text box to demonstrate the

format of a BuckeyeVR script. The first line must be

//ChangeFileNameHere.bvr

where ChangeFileNameHere is the name of the visualization stored in the smart-

phone. For example if I wanted to have create a visualization called Parabola, the first

line would read

2

https://buckeyevr.osu.edu/plot/

Figure 2: Layout of the plotting website (subject to change).

//Parabola.bvr

You must leave the two forward slashes (//) before the name and the .bvr extension

after the name. Putting two forward slashes before a line indicates that the line is a

comment, which is ignored by the interpreter.

2. Error Detection Box

This box is used for basic debugging of scripts. If a visualization does not render, the

output in this box ‘may’ be helpful for tracking down the error.

3. Selection Buttons

Generate URL

This button will generate a popup such as the one in Fig. 3, which will prompt you to

press Ctrl (Cmd for Mac) and c to copy the given url. If you look more closely at the url,

you can see that it is just the script after https://buckeyevr.osu.edu/plot/? (with

3

certain characters swapped out to be more URL-friendly). This allows you to create a

link to come back and continue working on a project, or distribute it to others to view

the visualization. There are a couple of important considerations with this method

Figure 3: Example popup containing the URL that returns to the visualization.

Warning!

• In some browsers, the url in the popup has a maximum length of ∼2000 characters.

It will automatically replace some of the text in the middle with ‘. . . ’

– If your script is getting long, you may want to check that the url retains all of

the data before closing the plotting website

– You can also just save the script in a text file and paste it into the script box

to make sure it is saved.

• If you edit the script you must generate a new url to have the script saved.

Warning!

Render

This button will display the output of the script in the plotting window on the right.

Generate QR code

This button will convert the content in the script window to a QR code (see Section 2.2

for more information).

4. Plot Viewer

The output of the script is rendered here. To rotate around the objects either click and

rotate the mouse, or hold the alt key and move the mouse. The mouse wheel can be

used to zoom in and out.

5. Fullscreen Button

Press this button to enter fullscreen mode (press ESC to exit fullscreen mode).

4

2.2 QR Codes

An important feature of the BuckeyeVR plotting system is the user of QR codes to load

visualizations on smartphones. The app supports two modes for scanning QR codes: Data

QR codes where the data itself is stored in the QR code, and URL QR codes, where the

QR code just stores the URL of a website containing the plotting script as demonstrated in

Figures 4 and 5.

//Hyperbolic Paraboloid.bvr

h=parametricSurface

h.setMinMax=s,-3,3

h.setMinMax=t,-3,3

h.setEquation=x,(s)

h.setEquation=y,(t)

h.setEquation=z,(s^2/3-t^2/3)

h.setSegmentCount=20

h.spawn

p1=parametricCurve

p1.setMinMax=t,-3,3

p1.setEquation=x,(t)

p1.setEquation=y,(0)

p1.setEquation=z,(t^2/3)

p1.setSegmentCount=50

p1.setThickness=0.3

p1.color=blue

p1.spawn

p2=parametricCurve

p2.setMinMax=t,-3,3

p2.setEquation=x,(0)

p2.setEquation=y,(t)

p2.setEquation=z,(-1*t^2/3)

p2.setSegmentCount=50

p2.setThickness=0.3

p2.color=green

p2.spawn

Figure 4: Data QR code (left) and the data stored in the code (right).

https://buckeyevr.osu.edu/plot/ExampleBVRFiles/HyperbolicParaboloid.bvr

Figure 5: URL QR code (left) and the data stored in the code (right).

As scripts become more complicated, so do the Data QR codes. On the other hand, URL

QR codes only point to a website and are thus often much simpler, although we have not

launched an automated system to generate them. Some of the differences are summarized

below.

5

https://buckeyevr.osu.edu/plot/ExampleBVRFiles/HyperbolicParaboloid.bvr

Data QR code

• Pros

– Generated automatically from plotting website

– No need for internet after app is installed on device

• Cons

– Character limit, which limits the length of scripts

∗ For example, the salt crystal in Section 4.3 is too large for our data QR codes.

– Generally more complex codes

∗ Longer time for phone to scan

URL QR code

• Pros

– Generally scanned more quickly by phone

∗ Can use smaller QR codes that are still easily readable by phone

– Can update visualization after QR code is generated

• Cons

– Not generate automatically

– Requires an internet connection

To create a url qr code, the bvr file (a text file containing the script and containing a .bvr

extension) can be saved to a personal site, where the url must end in Filename.bvr (e.g.

https://buckeyevr.osu.edu/plot/ExampleBVRFiles/NaCl.bvr) (currently this is not compat-

ible with Google Drive, Dropbox, and similar services, although it works with GitHub as

discussed in Section 2.2.1). There are a variety of free QR code generating websites and they

can also be generated automatically in a variety of languages such as python or LATEX.

2.2.1 Using GitHub to Share Scripts

If you do not have access to a personal site to post bvr scripts, another option is GitHub2

(there are plenty of source code repositories that should also work; we demonstrate a method

using GitHub’s web-based tools to lower the barrier to entry for users unfamiliar with git).
2Information presented here is subject to change, we have no affiliation with GitHub.

6

https://buckeyevr.osu.edu/plot/ExampleBVRFiles/NaCl.bvr
https://github.com/
https://en.wikipedia.org/wiki/Comparison_of_source_code_hosting_facilities

1. Create an account with GitHub,

2. Create a repository as discussed here

3. Create a new file

4. Choose a filename ending with .bvr and write the script

5. When you are done working, commit the new file

6. Look for the url of the ‘raw’ version, which just contains the code. Click on the file

you just committed and select the raw option. It should redirect you to a page such as

https://raw.githubusercontent.com/BuckeyeVR/Examples/master/HyperbolicParaboloid.bvr.

7. Create the QR code

This process is a little more involved (although in general only steps 4-7 must be repeated).

7

https://github.com/
https://help.github.com/articles/create-a-repo/
https://raw.githubusercontent.com/BuckeyeVR/Examples/master/HyperbolicParaboloid.bvr

3 Plotting Options

3.1 Common Plotting Options

First we discuss several common plotting options shared by several of the plotting objects.

3.1.1 color

The color of most objects can be set with the same syntax (vector fields currently do not

have this property). After an object ‘varName’ has been declared, the color can be set with

varName.color=red

where the available basic colors follow.

• black

• blue

• cyan

• aqua

• gray

• grey

• green

• magenta

• fuschia

• red

• white

• yellow

Additional colors can be used with the syntax

varName.color=R,G,B

where R,G,and B accept values from 0 to 255.

3.1.2 Functions and Operations

For use in equations, the following functions (from Math.f) and operators are implemented.

• sqrt

• cos

• acos

• sin

• asin

• tan

• atan

• abs

8

• log

• ln

• +

• -

• /

• ∧

• %

3.1.3 spawn

After the properties of an object are set, it must be rendered to appear in the visualization.

For all objects except those discussed in Section 3.5, varName.spawn must be called for the

object.

3.2 Parametric Curves

Parametric curves have the type parametricCurve. The curve is parameterized with t and

the equations are represented in Cartesian coordinates.

3.2.1 setMinMax

We may begin by settings the bounds for the parameter t with:

curve.setMinMax=t,0,3.14

where in this case we have 0 ≤ t ≤ 3.14. We require that the first number to be smaller than

the second number.

3.2.2 setEquation

The equations for x, y, and z are then given in terms of t using the syntax

curve.setEquation=x,(t)

curve.setEquation=y,(t)

curve.setEquation=z,(t)

where t is replaced with the desired function of t (including 0 or another constant to plot a

2D parametric curve). The parenthesis around the function of t are required. The equations

and operations that can be used in setEquation are discussed in Section 3.1.2

9

3.2.3 setSegmentCount

The parametric curves are plotted as a number of linear segments that follow the path of

the curve. We could represent a curve with 100 segments

curve.setSegmentCount=100

The curve can be better represented with more segments, although this can cause the

visualization to render slowly. As a rule of thumb, a few hundred segments should be fine

(although when there are more objects in the scene such as parametric surfaces, this may

need to be reduced to mitigate lagging with the rotation of a smartphone).

Due to the current plotting scheme smaller numbers of segments are used, the curve may

not exactly match the bounds in Section 3.2.1 (setMinMax). This can be fixed my changing

the number of segments, or adjusting the bounds. For example, if you are drawing a circle

with only 20 segments, you may wish to use the range [0, 6.28] you have to use the bounds

[0, 6.5] to make sure the curve closes. This will likely be improved with further updates.

3.2.4 setThickness

The parametric curve is given some thickness when rendered in 3D space. The radius of this

curve can be set using

curve.setThickness=0.15

Older versions of the code used a similar functions setWidth, which accepted two values

(with only the first contributing to the thickness). This old methods still works, but should

be replaced with setThickness moving forward.

3.2.5 color

See Section 3.1.1.

3.2.6 spawn

See Section 3.1.3.

3.2.7 Example

To demonstrate how all of these pieces work together, we will draw a spherical spiral. The

code and resulting visualization are included below and can be seen on the plotting website.

10

http://mathworld.wolfram.com/SphericalSpiral.html
https://buckeyevr.osu.edu/plot/?%2F%2Fspiral.bvr%2Fn%2Fnp=parametricCurve%2Fnp.setMinMax=t,-20,20%2Fnp.setEquation=x,%283*cos%28t%29*cos%28atan%28.1*t%29%29%29%2Fnp.setEquation=y,%283*sin%28t%29*cos%28atan%28.1*t%29%29%29%2Fnp.setEquation=z,%28-3*sin%28atan%28.1*t%29%29%29%2Fnp.setSegmentCount=150%2Fnp.setThickness=0.15%2Fnp.color=green%2Fnp.spawn

//spiral.bvr

p=parametricCurve

p.setMinMax=t,-20,20

p.setEquation=x,(3*cos(t)*cos(atan(.1*t)))

p.setEquation=y,(3*sin(t)*cos(atan(.1*t)))

p.setEquation=z,(-3*sin(atan(.1*t)))

p.setSegmentCount=150

p.setThickness=0.15

p.color=green

p.spawn

3.3 Parametric Surfaces

Parametric curves are created similarly to parametric curves as discussed in Section 3.2,

although the surface is parametrized with both s and t.

3.3.1 setMinMax

The range for s and t are set similarly, where

surf.setMinMax=s,0,3.14

surf.setMinMax=t,0,1

would plot s and t in the ranges 0 ≤ s ≤ 3.14 and 0,≤ t ≤ 1.

3.3.2 setSegmentCount

Similar to the segments used to draw parametric curves, a set of mesh segments are used to

draw parametric surfaces. For eample

surf.setSegmentCount=20

uses 20 segments in both the s and t directions. (Future versions may scale this based on

range or allow it to be user defined for each parameter). Similar roundoff problems may

occur as with those in Section 3.2.3.

11

3.3.3 setEquation

The equations for x, y, and z are then given in terms of s and t using the syntax

surf.setEquation=x,(s,t)

surf.setEquation=y,(s,t)

surf.setEquation=z,(s,t)

where s,t is replaced with the desired function of s and t. The parenthesis around the

function of t are required. The equations and operations that can be used in setEquation

are discussed in Section 3.1.2.

3.3.4 color

See Section 3.1.1. The color for parametric surfaces is currently not quite true to the input

due to current shader settings.

3.3.5 spawn

See Section 3.1.3.

3.3.6 Example

Here is a simple example of a surface z = 2 sin(x) cos(y), where we have used s and t to

represent x and y. The script can be found on the plotting website.

//surface.bvr

h=parametricSurface

h.setMinMax=s,-3,3

h.setMinMax=t,-3,3

h.setEquation=x,(s)

h.setEquation=y,(t)

h.setEquation=z,(2*sin(s)*cos(t))

h.setSegmentCount=20

h.color=255,0,0

h.spawn

12

https://buckeyevr.osu.edu/plot/?%2F%2Fsurface.bvr%2Fnh=parametricSurface%2Fnh.setMinMax=s,-3,3%2Fnh.setMinMax=t,-3,3%2Fnh.setEquation=x,%28s%29%2Fnh.setEquation=y,%28t%29%2Fnh.setEquation=z,%282*sin%28s%29*cos%28t%29%29%2Fnh.setSegmentCount=20%2Fnh.color=255,0,0%2Fnh.spawn

3.4 Vectors

Another feature is the ability to draw vectors from one point in space to another. These

can also be used to draw axes and highlight features in the visualization. The vectorDraw

method is used. Vectors can also be used to draw axes for plots as shown in Section 3.4.6.

3.4.1 setTail

The originating point of the vector is set using

vector.setTail=0,0,0

where (0, 0, 0) is replaced with the desired coordinates.

3.4.2 setHead

The point to which the vector points is set with

vector.setHead=1,1,1

where (1, 1, 1) is replaced with the desired coordinates.

3.4.3 setRadius

In order to chance the thickness of the vector, the following command is used.

vector.radius=0.25

3.4.4 color

See Section 3.1.1.

3.4.5 spawn

See Section 3.1.3.

3.4.6 Example

For example, let’s draw a set of axes as demonstrated here.

13

https://buckeyevr.osu.edu/plot/?%2F%2FAxes.bvr%2FnxAxis=vectorDraw%2FnxAxis.setTail=0,0,0%2FnxAxis.setHead=2,0,0%2FnxAxis.color=red%2FnxAxis.setRadius=0.25%2FnxAxis.spawn%2Fn%2FnyAxis=vectorDraw%2FnyAxis.setTail=0,0,0%2FnyAxis.setHead=0,2,0%2FnyAxis.color=0,255,0%2FnyAxis.setRadius=0.25%2FnyAxis.spawn%2Fn%2FnzAxis=vectorDraw%2FnzAxis.setTail=0,0,0%2FnzAxis.setHead=0,0,2%2FnzAxis.color=blue%2FnzAxis.setRadius=0.25%2FnzAxis.spawn

//Axes.bvr

xAxis=vectorDraw

xAxis.setTail=0,0,0

xAxis.setHead=2,0,0

xAxis.color=red

xAxis.setRadius=0.25

xAxis.spawn

yAxis=vectorDraw

yAxis.setTail=0,0,0

yAxis.setHead=0,2,0

yAxis.color=0,255,0

yAxis.setRadius=0.25

yAxis.spawn

zAxis=vectorDraw

zAxis.setTail=0,0,0

zAxis.setHead=0,0,2

zAxis.color=blue

zAxis.setRadius=0.25

zAxis.spawn

3.5 Standard Objects (Cubes, spheres, text etc.)

BuckeyeVR also includes some standard shapes that can be added to visualizations including

the following.

• cube

• cylinder

• sphere

• vector 3

• plane

• capsule

These standard objects are automatically drawn when initialized (e.g. c=cube) and do

not need to be spawned. Also 3D text can be added to the visualizations as discussed in

Section 3.5.5.
3The vector included in these objects may not behave correctly and, in most cases vectorDraw should be used instead.

14

3.5.1 position

The default center of these objects is at the origin (0, 0, 0), to chance this, one may use

obj.position=x,y,z

where (x, y, z) is the desired location of the center of the object.

3.5.2 rotation

The rotation of the objects is set using

obj.position=xr,yr,zr

where xr, yr, and zr are the rotations about the x, y, and z axes respectively in degrees.

3.5.3 scale

The size of these objects can be adjusted by scaling the object in x, y, or z. For example

we could double the size of the object by scaling by two in each dimension. The scaling is

performed with respect to the unrotated object.

obj.scale=2,2,2

3.5.4 color

See Section 3.1.1.

3.5.5 Text

Also text can be added by using the same properties and and a description

txt.text=Write Text Here

The text is represented with a 3D object and as with the other simple objects, its scale and

position can be used to modify the location and size.

3.5.6 Example

These different shapes and options are demonstrated with this example

15

https://buckeyevr.osu.edu/plot/?%2F%2FobjExample.bvr%2Fn%2Fnh=cube%2Fnh.scale=.9,.5,1.4%2Fn%2Fns=sphere%2Fns.position=0,0,1.3%2Fn%2Fna1=capsule%2Fna1.position=1,0,0%2Fna1.scale=.5,.5,.6%2Fna1.rotation=0,40,0%2Fn%2Fna2=capsule%2Fna2.position=-1,0,0%2Fna2.scale=.5,.5,.6%2Fna2.rotation=0,-40,0%2Fn%2Fnl1=cylinder%2Fnl1.position=-.25,0,-1.35%2Fnl1.scale=.4,.4,.6%2Fn%2Fnl2=cylinder%2Fnl2.position=.25,0,-1.35%2Fnl2.scale=.4,.4,.6%2Fn%2Fntxt=text%2Fntxt.text=Hello%20World!%2Fntxt.color=red%2Fntxt.position=0,0,2.5%2Fn%2Fnf=plane%2Fnf.position=0,0,-1.75%2Fnf.color=green

//objExample.bvr

h=cube

h.scale=.9,.5,1.4

s=sphere

s.position=0,0,1.3

a1=capsule

a1.position=1,0,0

a1.scale=.5,.5,.6

a1.rotation=0,40,0

a2=capsule

a2.position=-1,0,0

a2.scale=.5,.5,.6

a2.rotation=0,-40,0

l1=cylinder

l1.position=-.25,0,-1.35

l1.scale=.4,.4,.6

l2=cylinder

l2.position=.25,0,-1.35

l2.scale=.4,.4,.6

txt=text

txt.text=Hello World!

txt.color=red

txt.position=0,0,2.5

f=plane

f.position=0,0,-1.75

f.color=green

3.6 Vector Fields

It is also possible to draw vector fields in BuckeyeVR with the vectorField object. It should

be noted that this feature is not well tested and there are several bugs that cause this it to

not behave as expected. This should be used with caution (please contact us if you are using

the feature in its current form) and will be changed in future updates to correct the errors.

16

4 Additional Examples

4.1 Potential

Potential Example

//Potential Example.bvr

P=parametricSurface

P.setMinMax=s,0,6.28

P.setMinMax=t,0,1.35

P.setEquation=x,(3*sin(s)*t)

P.setEquation=y,(3*cos(s)*t)

P.setEquation=z,(3*(t^2-1)^2)

P.setSegmentCount=30

P.spawn

h=parametricCurve

h.setMinMax=t,-1.35,1.35

h.setEquation=x,(3*t)

h.setEquation=y,(0)

h.setEquation=z,(3*(t^2-1)^2)

h.setSegmentCount=90

h.setWidth=0.15,0.1

h.color=blue

h.spawn

t=sphere

t.position=0,0,3.25

t.scale=0.75,0.75,0.75

t.color=red

b=sphere

b.position=3,0,0.4

b.scale=0.75,0.75,0.75

b.color=red

v=vectorPoints

v.setTail=.25,0,3.45

v.setHead=2.4,0,1

v.setRadius=0.25

v.color=gray

v.spawn

4.2 Helix Example

Helix Example

//Helix Example.bvr

helix=parametricCurve

helix.setMinMax=t,-10,10

helix.setEquation=x,(cos(t))

17

https://buckeyevr.osu.edu/plot/?%2F%2FPotential.bvr%2FnP=parametricSurface%2FnP.setMinMax=s,0,6.28%2FnP.setMinMax=t,0,1.35%2FnP.setEquation=x,%283*sin%28s%29*t%29%2FnP.setEquation=y,%283*cos%28s%29*t%29%2FnP.setEquation=z,%283*%28t%5E2-1%29%5E2%29%2FnP.setSegmentCount=30%2FnP.spawn%2Fn%2Fnh=parametricCurve%2Fnh.setMinMax=t,-1.35,1.35%2Fnh.setEquation=x,%283*t%29%2Fnh.setEquation=y,%280%29%2Fnh.setEquation=z,%283*%28t%5E2-1%29%5E2%29%2Fnh.setSegmentCount=90%2Fnh.setWidth=0.15,0.1%2Fnh.color=blue%2Fnh.spawn%2Fn%2Fnt=sphere%2Fnt.position=0,0,3.25%2Fnt.scale=0.75,0.75,0.75%2Fnt.color=red%2Fn%2Fnb=sphere%2Fnb.position=3,0,0.4%2Fnb.scale=0.75,0.75,0.75%2Fnb.color=red%2Fn%2Fnv=vectorPoints%2Fnv.setTail=.25,0,3.45%2Fnv.setHead=2.4,0,1%2Fnv.setRadius=0.25%2Fnv.color=gray%2Fnv.spawn
https://buckeyevr.osu.edu/plot/?%2F%2FHelix%20Example.bvr%2Fnhelix=parametricCurve%2Fnhelix.setMinMax=t,-10,10%2Fnhelix.setEquation=x,%28cos%28t%29%29%2Fnhelix.setEquation=y,%28sin%28t%29%29%2Fnhelix.setEquation=z,%28.3*t%29%2Fnhelix.setSegmentCount=100%2Fnhelix.setWidth=0.1,0.1%2Fnhelix.color=red%2Fnhelix.spawn%2Fn%2Fn%2F%2FUse%20Vectors%2FnzAxis=vector%2FnzAxis.scale=0.4,0.4,1%2FnzAxis.color=gray%2FnzAxis.position=0,0,0.1%2Fntxtz=text%2Fntxtz.text=z%2Fntxtz.color=white%2Fntxtz.rotation=0,0,180%2Fntxtz.position=0,0,2%2Fn%2FnyAxis=vector%2FnyAxis.scale=0.4,0.4,1%2FnyAxis.color=gray%2FnyAxis.rotation=0,90,90%2FnyAxis.position=0,1.1,-1%2Fn%2Fntxty=text%2Fntxty.text=y%2Fntxty.color=white%2Fntxty.position=0,3,0%2Fntxty.rotation=0,0,270%2Fntxty.position=0,3,-1%2Fn%2FnxAxis=vector%2FnxAxis.scale=0.4,0.4,1.0%2FnxAxis.color=gray%2FnxAxis.rotation=0,90,180%2FnxAxis.position=1.1,0,-1%2Fn%2Fntxtx=text%2Fntxtx.text=x%2Fntxtx.color=white%2Fntxtx.position=3,0,-1

helix.setEquation=y,(sin(t))

helix.setEquation=z,(.3*t)

helix.setSegmentCount=100

helix.setWidth=0.1,0.1

helix.color=red

helix.spawn

//Use Vectors

zAxis=vector

zAxis.scale=0.4,0.4,1

zAxis.color=gray

zAxis.position=0,0,0.1

txtz=text

txtz.text=z

txtz.color=white

txtz.rotation=0,0,180

txtz.position=0,0,2

yAxis=vector

yAxis.scale=0.4,0.4,1

yAxis.color=gray

yAxis.rotation=0,90,90

yAxis.position=0,1.1,-1

txty=text

txty.text=y

txty.color=white

txty.position=0,3,0

txty.rotation=0,0,270

txty.position=0,3,-1

xAxis=vector

xAxis.scale=0.4,0.4,1.0

xAxis.color=gray

xAxis.rotation=0,90,180

xAxis.position=1.1,0,-1

txtx=text

txtx.text=x

txtx.color=white

txtx.position=3,0,-1

4.3 NaCl

Now we will show an example of a NaCl crystal. This script was generated using a simple

python script. It should be noted that only a portion of the bvr code is included below as

it is rather long. The full code can be viewed here.

Here is the python script used to generate the bvr file.

#!/usr/bin/env python

18

https://buckeyevr.osu.edu/plot/ExampleBVRFiles/NaCl.bvr

n = 0

m = 2

for x in xrange(-m,m+1):

for y in xrange(-m,m+1):

for z in xrange(-m,m+1):

if (x+y+z)%2 == 0:

print "s"+str(n)+"=sphere"

print "s"+str(n)+".position="+str(x)+","+str(y)+","+str(z)

print "s"+str(n)+".color=green"

n+=1

else:

print "s"+str(n)+"=sphere"

print "s"+str(n)+".position="+str(x)+","+str(y)+","+str(z)

print "s"+str(n)+".scale=0.525,0.525,0.525"

print "s"+str(n)+".color=red"

n+=1

Here is the start of the bvr file, the rest can be viewed here.

//NaCl Crystal Example.bvr

s0=sphere

s0.position=-2,-2,-2

s0.color=green

s1=sphere

s1.position=-2,-2,-1

s1.scale=0.525,0.525,0.525

s1.color=red

s2=sphere

s2.position=-2,-2,0

...

19

https://buckeyevr.osu.edu/plot/ExampleBVRFiles/NaCl.bvr

	Introduction
	Getting Started
	Plotting Website
	QR Codes
	Using GitHub to Share Scripts

	Plotting Options
	Common Plotting Options
	color
	Functions and Operations
	spawn

	Parametric Curves
	setMinMax
	setEquation
	setSegmentCount
	setThickness
	color
	spawn
	Example

	Parametric Surfaces
	setMinMax
	setSegmentCount
	setEquation
	color
	spawn
	Example

	Vectors
	setTail
	setHead
	setRadius
	color
	spawn
	Example

	Standard Objects (Cubes, spheres, text etc.)
	position
	rotation
	scale
	color
	Text
	Example

	Vector Fields

	Additional Examples
	Potential
	Helix Example
	NaCl

